On detection of emerging anomalous traffic patterns using GPS data

نویسندگان

  • Linsey Xiaolin Pang
  • Sanjay Chawla
  • Wei Liu
  • Yu Zheng
چکیده

The increasing availability of large-scale trajectory data provides us great opportunity to explore them for knowledge discovery in transportation systems using advanced data mining techniques. Nowadays, large number of taxicabs in major metropolitan cities are equipped with a GPS device. Since taxis are on the road nearly twenty four hours a day (with drivers changing shifts), they can now act as reliable sensors to monitor the behavior of traffic. In this article, we use GPS data from taxis to monitor the emergence of unexpected behavior in the Beijing metropolitan area, which has the potential to estimate and improve traffic conditions in advance. We adapt likelihood ratio test statistic(LRT) which have previously been mostly used in epidemiological studies to describe traffic patterns. To the best of our knowledge the use of LRT in traffic domain is not only novel but results in accurate and rapid detection of anomalous behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Mining Anomalous Patterns in Road Traffic Streams

Large number of taxicabs in major metropolitan cities are now equipped with a GPS device. Since taxis are on the road nearly twenty four hours a day (with drivers changing shifts), they can now act as reliable sensors to monitor the behavior of traffic. In this paper we use GPS data from taxis to monitor the emergence of unexpected behavior in the Beijing metropolitan area. We adapt likelihood ...

متن کامل

Detecting Anomalous Trajectories and Behavior Patterns Using Hierarchical Clustering from Taxi GPS Data

Anomalous taxi trajectories are those chosen by a small number of drivers that are different from the regular choices of other drivers. These anomalous driving trajectories provide us an opportunity to extract driver or passenger behaviors and monitor adverse urban traffic events. Because various trajectory clustering methods have previously proven to be an effective means to analyze similariti...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

Unsupervised Detection of Drivers ’ Behavior Patterns

Probes with GPS devices reveal useful information for traffic conditions and patterns. The high level of noises and lack of details make it challenging to mine behavioral patterns from the raw data collected. Behavioral patterns are essential for understanding the underlying structures of data sources and various real-world interests such as traffic planning, vehicle operations and anomalous/po...

متن کامل

Road Traffic Anomaly Detection via Collaborative Path Inference from GPS Snippets

Road traffic anomaly denotes a road segment that is anomalous in terms of traffic flow of vehicles. Detecting road traffic anomalies from GPS (Global Position System) snippets data is becoming critical in urban computing since they often suggest underlying events. However, the noisy ands parse nature of GPS snippets data have ushered multiple problems, which have prompted the detection of road traf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Data Knowl. Eng.

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2013